Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Nat Commun ; 15(1): 3192, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609354

RESUMO

Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed "onsemble"), we also find neurons that are specifically inactivated (termed "offsemble"). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.


Assuntos
Cálcio , Neurônios , Animais , Camundongos , Algoritmos , Inibição Psicológica , Fótons
2.
Curr Opin Neurobiol ; 86: 102869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552547

RESUMO

The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.

3.
Sci Rep ; 14(1): 5083, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429381

RESUMO

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.


Assuntos
Hydra , 60598 , Animais , Hydra/fisiologia , Cálcio , Sistema Nervoso , Animais Geneticamente Modificados
4.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352485

RESUMO

The propagation of action potentials along axons is traditionally considered to be reliable, as a consequence of the high safety factor of action potential propagation. However, numerical simulations have suggested that, at high frequencies, spikes could fail to invade distal axonal branches. Given the complex morphologies of axonal trees, with extensive branching and long-distance projections, spike propagation failures could be functionally important. To explore this experimentally in vivo, we used an axonal-targeted calcium indicator to image action potentials at axonal terminal branches in superficial layers from mouse somatosensory cortical pyramidal neurons. We activated axons with an extracellular electrode, varying stimulation frequencies, and computationally extracted axonal morphologies and associated calcium responses. We find that axonal boutons have higher calcium accumulations than their parent axons, as was reported in vitro. But, contrary to previous in vitro results, our data reveal spike failures in a significant subset of branches, as a function of branching geometry and spike frequency. The filtering is correlated with the geometric ratio of the branch diameters, as expected by cable theory. These findings suggest that axonal morphologies contribute to signal processing in the cortex.

5.
Neuron ; 112(6): 875-892, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262413

RESUMO

Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.


Assuntos
Encéfalo , Neurônios , Humanos , Neurônios/fisiologia , Aprendizagem
6.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37986838

RESUMO

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ micro-waves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7 or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer, in a titre-dependent fashion. Ca2+ micro-waves developed in hippocampal CA1 and CA3, but not dentate gyrus (DG) nor neocortex, were typically first observed at 4 weeks after viral transduction, and persisted up to at least 8 weeks. The phenomenon was robust, observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ micro-waves depend on the promoter and viral titre of the GECI, density of expression as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artifact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ micro-waves and we provide a potential solution.

7.
Opt Express ; 31(20): 33461-33474, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859128

RESUMO

A technical challenge in neuroscience is to record and specifically manipulate the activity of neurons in living animals. This can be achieved in some preparations with two-photon calcium imaging and photostimulation. These methods can be extended to three dimensions by holographic light sculpting with spatial light modulators (SLMs). At the same time, performing simultaneous holographic imaging and photostimulation is still cumbersome, requiring two light paths with separate SLMs. Here we present an integrated optical design using a single SLM for simultaneous imaging and photostimulation. Furthermore, we applied axially dependent adaptive optics to make the system aberration-free, and developed software for calibrations and closed-loop neuroscience experiments. Finally, we demonstrate the performance of the system with simultaneous calcium imaging and optogenetics in mouse primary auditory cortex in vivo. Our integrated holographic system could facilitate the systematic investigation of neural circuit function in awake behaving animals.


Assuntos
Cálcio , Holografia , Animais , Camundongos , Holografia/métodos , Fótons , Software , Neurônios/fisiologia
8.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790332

RESUMO

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.

9.
Nat Protoc ; 18(10): 2869-2875, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697107

RESUMO

The ability to record and alter brain activity by using implantable and nonimplantable neural devices, while poised to have significant scientific and clinical benefits, also raises complex ethical concerns. In this Perspective, we raise awareness of the ability of artificial intelligence algorithms and data-aggregation tools to decode and analyze data containing highly sensitive information, jeopardizing personal neuroprivacy. Voids in existing regulatory frameworks, in fact, allow unrestricted decoding and commerce of neurodata. We advocate for the implementation of proposed ethical and human rights guidelines, alongside technical options such as data encryption, differential privacy and federated learning to ensure the protection of neurodata privacy. We further encourage regulatory bodies to consider taking a position of responsibility by categorizing all brain-derived data as sensitive health data and apply existing medical regulations to all data gathered via pre-registered neural devices. Lastly, we propose that a technocratic oath may instill a deontology for neurotechnology practitioners akin to what the Hippocratic oath represents in medicine. A conscientious societal position that thoroughly rejects the misuse of neurodata would provide the moral compass for the future development of the neurotechnology field.


Assuntos
Inteligência Artificial , Privacidade , Humanos , Juramento Hipocrático , Algoritmos
10.
STAR Protoc ; 4(3): 102543, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659084

RESUMO

Neuronal ensembles are coordinated groups of neurons that serve as functional building blocks of neural circuits. Here, we present PatMap, a computational toolbox for identifying pattern-completion neurons, key trigger cells capable of reactivating entire neuronal ensembles. We describe a protocol for modeling neural circuits as probabilistic graphical models, linking behavior with specific neuronal ensembles, and identifying their pattern-completion neurons. By linking the cellular and circuit level, PatMap provides a springboard for targeted manipulation and control of neural circuits. For complete details on the use and execution of this protocol, please refer to Carrillo-Reid et al. (2021).1.

11.
STAR Protoc ; 4(3): 102453, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37515760

RESUMO

The introduction of calcium imaging has rendered cnidarians, such as Hydra vulgaris, valuable model organisms for investigating neuronal activity and behavior. Here, we present a comprehensive protocol to image and manipulate neuronal activity and behavior of Hydra. We describe steps for wide-field imaging and two-photon simulation and ablation of neurons. We then detail imaging behavior and post-ablation analysis. We address challenges that may arise during the preparation and execution of the experiments.

12.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162988

RESUMO

Neuronal ensembles, defined as groups of coactive neurons, dominate cortical activity and are causally related to perceptual states and behavior. Interestingly, ensembles occur spontaneously in the absence of sensory stimulation. To better understand the function of ensembles in spontaneous activity, we explored if ensembles also occur during different brain states, including sleep, using two-photon calcium imaging from mouse primary visual cortex. We find that ensembles are present during all wake and sleep states, with different characteristics depending on the exact sleep stage. Moreover, visually evoked ensembles are reactivated during subsequent slow wave sleep cycles. Our results are consistent with the hypothesis that repeated sensory stimulation can reconfigure cortical circuits and imprint neuronal ensembles that are reactivated during sleep for potential processing or memory consolidation. One-Sentence Summary: Cortical neuronal ensembles are present across wake and sleep states, and visually evoked ensembles are reactivated in subsequent slow-wave sleep.

13.
Curr Biol ; 33(10): 1893-1905.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040768

RESUMO

The cnidarian Hydra vulgaris has a simple nervous system with a few hundred neurons in distributed networks. Yet Hydra can perform somersaults, a complex acrobatic locomotion. To understand the neural mechanisms of somersaulting we used calcium imaging and found that rhythmical potential 1 (RP1) neurons activate before somersaulting. Decreasing RP1 activity or ablating RP1 neurons reduced somersaulting, while two-photon activation of RP1 neurons induced somersaulting. Hym-248, a peptide synthesized by RP1 cells, selectively generated somersaulting. We conclude that RP1 activity, via release of Hym-248, is necessary and sufficient for somersaulting. We propose a circuit model to explain the sequential unfolding of this locomotion, using integrate-to-threshold decision making and cross-inhibition. Our work demonstrates that peptide-based signaling is used by simple nervous systems to generate behavioral fixed action patterns. VIDEO ABSTRACT.


Assuntos
Cnidários , Hydra , Animais , Hydra/fisiologia , Sequência de Aminoácidos , Peptídeos , Sistema Nervoso
14.
Proc Natl Acad Sci U S A ; 120(11): e2210439120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897982

RESUMO

How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.


Assuntos
Hydra , Animais , Hydra/fisiologia , Cálcio , Músculos , Movimento
15.
STAR Protoc ; 3(3): 101504, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042889

RESUMO

The remarkable regenerative abilities of the small cnidarian Hydra vulgaris include the capacity to reassemble itself after dissociation into individual cells. Here, we present a robust protocol for the dissociation and reaggregation of Hydra tissue that addresses many common challenges encountered during the preparation and execution of the dissociation, as well as the formation and care of regenerating cellular aggregates. Analysis of the process provides insight into the mechanisms of nervous system self-organization. For complete details on the use and execution of this protocol, please refer to Lovas and Yuste (2021).


Assuntos
Hydra , Animais , Hydra/fisiologia
16.
Nat Commun ; 13(1): 3340, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680927

RESUMO

Advances in 3D neuronal cultures, such as brain spheroids and organoids, are allowing unprecedented in vitro access to some of the molecular, cellular and developmental mechanisms underlying brain diseases. However, their efficacy in recapitulating brain network properties that encode brain function remains limited, thereby precluding development of effective in vitro models of complex brain disorders like schizophrenia. Here, we develop and characterize a Modular Neuronal Network (MoNNet) approach that recapitulates specific features of neuronal ensemble dynamics, segregated local-global network activities and a hierarchical modular organization. We utilized MoNNets for quantitative in vitro modelling of schizophrenia-related network dysfunctions caused by highly penetrant mutations in SETD1A and 22q11.2 risk loci. Furthermore, we demonstrate its utility for drug discovery by performing pharmacological rescue of alterations in neuronal ensembles stability and global network synchrony. MoNNets allow in vitro modelling of brain diseases for investigating the underlying neuronal network mechanisms and systematic drug discovery.


Assuntos
Encefalopatias , Esquizofrenia , Encéfalo , Histona-Lisina N-Metiltransferase , Humanos , Neurônios/fisiologia , Organoides , Esquizofrenia/genética
17.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35506662

RESUMO

Neuronal ensembles are coactive groups of cortical neurons, found in spontaneous and evoked activity, that can mediate perception and behavior. To understand the mechanisms that lead to the formation of ensembles, we co-activated layer 2/3 pyramidal neurons in brain slices from mouse visual cortex, in animals of both sexes, replicating in vitro an optogenetic protocol to generate ensembles in vivo. Using whole-cell and perforated patch-clamp pair recordings we found that, after optogenetic or electrical stimulation, coactivated neurons increased their correlated activity, a hallmark of ensemble formation. Coactivated neurons showed small biphasic changes in presynaptic plasticity, with an initial depression followed by a potentiation after a recovery period. Optogenetic and electrical stimulation also induced significant increases in frequency and amplitude of spontaneous EPSPs, even after single-cell stimulation. In addition, we observed unexpected strong and persistent increases in neuronal excitability after stimulation, with increases in membrane resistance and reductions in spike threshold. A pharmacological agent that blocks changes in membrane resistance reverted this effect. These significant increases in excitability can explain the observed biphasic synaptic plasticity. We conclude that cell-intrinsic changes in excitability are involved in the formation of neuronal ensembles. We propose an 'iceberg' model, by which increased neuronal excitability makes subthreshold connections suprathreshold, enhancing the effect of already existing synapses, and generating a new neuronal ensemble.


In the brain, groups of neurons that are activated together ­ also known as neuronal ensembles ­ are the basic units that underpin perception and behavior. Yet, exactly how these coactive circuits are established remains under investigation. In 1949, Canadian psychologist Donald Hebb proposed that, when brains learn something new, the neurons which are activated together connect to form ensembles, and their connections become stronger each time this specific piece of knowledge is recalled. This idea that 'neurons that fire together, wire together' can explain how memories are acquired and recalled, by strengthening their wiring. However, recent studies have questioned whether strengthening connections is the only mechanism by which neural ensembles can be created. Changes in the excitability of neurons (how easily they are to fire and become activated) may also play a role. In other words, ensembles could emerge because certain neurons become more excitable and fire more readily. To solve this conundrum, Alejandre-García et al. examined both hypotheses in the same system. Neurons in slices of the mouse visual cortex were stimulated electrically or optically, via a technique that controls neural activity with light. The activity of individual neurons and their connections was then measured with electrodes. Spontaneous activity among connected neurons increased after stimulation, indicative of the formation of neuronal ensembles. Connected neurons also showed small changes in the strength of their connections, which first decreased and then rebounded after an initial recovery period. Intriguingly, cells also showed unexpected strong and persistent increases in neuronal excitability after stimulation, such that neurons fired more readily to the same stimulus. In other words, neurons maintained a cellular memory of having been stimulated. The authors conclude that ensembles form because connected neurons become more excitable, which in turn, may strengthen connections of the circuit at a later stage. These results provide fresh insights about the neural circuits underpinning learning and memory. In time, the findings could also help to understand disorders such as Alzheimer's disease and schizophrenia, which are characterised by memory impairments and disordered thinking.


Assuntos
Plasticidade Neuronal , Córtex Visual , Animais , Feminino , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia
18.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610025

RESUMO

Dendritic spines have diverse morphologies, with a wide range of head and neck sizes, and these morphologic differences likely generate different functional properties. To explore how this morphologic diversity differs across species and ages we analyzed 3D confocal reconstructions of ∼8000 human spines and ∼1700 mouse spines, labeled by intracellular injections in fixed tissue. Using unsupervised algorithms, we computationally separated spine heads and necks and systematically measured morphologic features of spines in apical and basal dendrites from cortical pyramidal cells. Human spines had unimodal distributions of parameters, without any evidence of morphologic subtypes. Their spine necks were longer and thinner in apical than in basal spines, and spine head volumes of an 85-year-old individual were larger than those of a 40-year-old individual. Human spines had longer and thicker necks and larger head volumes than mouse spines. Our results indicate that human spines form part of a continuum, are larger and longer than those of mice, and become larger with increasing adult age. These morphologic differences in spines across species could generate functional differences in biochemical and electrical spine compartmentalization, or in synaptic properties, across species and ages.


Assuntos
Espinhas Dendríticas , Células Piramidais , Animais , Dendritos , Humanos , Camundongos
19.
Cell Rep ; 39(4): 110751, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476991

RESUMO

The cerebral cortex is spontaneously active, but the function of this ongoing activity remains unclear. To test whether spontaneous activity encodes learned experiences, we measured the response of neuronal populations in mouse primary visual cortex with chronic two-photon calcium imaging during visual habituation to a specific oriented stimulus. We find that, during habituation, spontaneous activity increases in neurons across the full range of orientation selectivity, eventually matching that of evoked levels. This increase in spontaneous activity robustly correlates with the degree of habituation. Moreover, boosting spontaneous activity with two-photon optogenetic stimulation to the levels of visually evoked activity accelerates habituation. Our study shows that cortical spontaneous activity is linked to habituation, and we propose that habituation unfolds by minimizing the difference between spontaneous and stimulus-evoked activity levels. We conclude that baseline spontaneous activity could gate incoming sensory information to the cortex based on the learned experience of the animal.


Assuntos
Córtex Visual , Animais , Cálcio , Aprendizagem , Camundongos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
20.
Science ; 375(6576): 82-86, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34762487

RESUMO

Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states.


Assuntos
Espinhas Dendríticas/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação , Animais , Potenciais da Membrana , Camundongos , Optogenética , Técnicas de Patch-Clamp , Córtex Somatossensorial/citologia , Sinapses/fisiologia , Potenciais Sinápticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...